Applying Hadoop’s MapReduce Framework on
Clustering the GPS Signals through Cloud Computing

'Wichian Premchaiswadi, *Walisa Romsaiyud, *Sarayut Intarasema.
Graduate School of Information Technology
Siam University
Bangkok, Thailand
'wichian@siam.edu, *walisa.rom@siam.edu, *darkman502@hotmail.com
*Nucharee Premchaiswadi
Faculty of Information Technology,
Dhurakij Pundit University,
Bangkok, Thailand
4nucharee@dpu.ac.th

Abstract— Year by year, we are considerably witnessing a
dramatic increase in the size of data gathered from machines or
human interactions. Typically, the data generated by machines is
massive, complex and comes from different varieties including
sensors collecting climate information, posts being shared in
social media sites, videos being posted online, digital pictures,
transaction records of online purchases, cell phone GPS signals
and so on. Not surprisingly, the amount of data generated by
machines is greater than the data generated by human elements.
Sensor data (obtained from transportation, logistics, retail,
utilities, and telecommunications) has continuously been
generated from fleet GPS trans-receivers, RFID tag readers;
smart meters, to cell phones. Such data has frequently been used
in numerous parallel processing methods so as to optimize
operations and drive operational business intelligence (BI)
systems scrutinizing immediate business opportunities.
Appropriately, MapReduce is a programming model designed for
expressing distributed computations on massive datasets and an
execution framework for large-scale data processing on clusters
of commodity servers. In this paper, we enhanced the Hadoop
MapReduce for data-intensive computing on massive datasets of
GPS signals. We developed an execution framework for large-
scale data processing through the cloud system —in order to
reduce the execution time of the cluster systems— as well.

Keywords- Mobile Location-Based Services; GPS Signals;
Cloud Computing; Hadoop Distributed File Systems (HDFS);
MapReduce.

L. INTRODUCTION

Today’s mobile devices operate independently of each
other, using only local computing, sensing, networking, and
storage capabilities and functions provided by remote Internet
services. It is generally difficult or expensive for a mobile
device to share data and computing resources with another.
Data is shared through centralized services, requiring expensive
uploads and downloads that strain wireless data networks.
Collaborative computing is only achieved using ad hoc

978-1-4799-0838-7/13/$31.00 2013 IEEE

approaches. Coordinating mobile device data and computing
would allow mobile applications to utilize the capabilities of an
entire mobile device cloud while avoiding global network
bottlenecks. In many cases, processing mobile data in-place
and transferring it directly between mobile devices, would be
more efficient and less susceptible to network limitations than
offloading data and processing to remote servers.

We have extended the Hadoop MapReduce platform
derived from Hadoop that supports cloud computing on
Android and windows phone mobile devices. Our proposal
allows client applications to conveniently utilize data and
execute computing jobs on networks of mobile devices and
heterogeneous networks of phones and servers. By scaling with
the number of devices and tolerating node departure, we allow
applications to use distributed resources abstractly, oblivious to
the physical nature of the cloud. The design and
implementation of the proposal includes experiences in porting
Hadoop to the Android platform and the design of mobile
specific customizations. The scalability of our proposed
method is evaluated experimentally and compared to that of
Hadoop. Although the performance of our proposed method is
poor for CPU-bound tasks, it is shown to significantly tolerate
node-departure offering reasonable performance in data
sharing. A distributed multimedia search and sharing
application is implemented to qualitatively evaluate the
proposed from an application development perspective.

Therefore, the rationale behind the paper is based on the
challenge of using mobile hardware through cloud computing.
We all know that cloud computing offers various advantages
over using traditional hardware such as computational access to
multimedia (and sensor data without large network transfers),
more efficient access to data stored on other mobile devices,
and distributed ownership and maintenance of hardware.
Therefore, the idea of opting cloud computing approach
inevitably gives rise to many concerns including access-

control, incentivisation of users, privacy, and mobile resource
conservation. At the same time, the following approach may
create many opportunities for interesting new applications and
for more resource-efficient versions of existing applications as
well.

The remainder of this paper is organized as follows. In
Section 2, we review and describe related technology. Section
3 addresses the system architecture. Section 4 describes the
design and implementation. And the final section provides a
conclusion and describes the future work.

II. LITERATURE REVIEW

At present, there are many terms and techniques concerning
the GPS database management based on the Hadoop’s
MapReduce as the following:

A. Cloud Computing

Cloud Computing is a new paradigm [I-2] that uses
dynamically scalable shared resources over the scalable
network of nodes. Data centers, web services, and low-end
devices can be examples of such nodes. The network of such
nodes can be termed as the Cloud and several networks of such
nodes can be called the Internet-of-Clouds. The Internet of
Clouds involves four major participants which are Cloud
providers, brokers, resellers, and end consumers.

We can discuss the entities of Cloud as following [2];

* Cloud Providers: The providers host and manage the
underlying infrastructure and offer different services
(e.g., SaaS, PaaS, IaaS, and etc.) to the consumers, the
service brokers or resellers. Cloud brokers and resellers

plays the same role as “Cloud providers”.

Cloud Service Brokers: Service brokers concentrate on
the negotiation of the relationships between consumers
and providers without owning or managing the whole
Cloud infrastructure. Moreover, they add extra services
on top of a Cloud provider’s infrastructure to make up
the user’s Cloud environment.

Cloud Resellers: Resellers can become an important
factor of the Cloud market when the Cloud providers
will expand their business across continents. Cloud
providers may choose local IT consultancy firms or
resellers of their existing products to act as “resellers™
for their Cloud-based products in a particular region.

Cloud Consumers: [1] End users belong to the category
of Cloud consumers. However, also Cloud service
brokers and resellers can belong to this category as
soon as they are customers of another Cloud provider,
broker or reseller.

B. National Marine Electronics Association (NMEA)

The National Marine Electronics Association (NMEA)[3-4]
has developed a specification that defines the interface between
various pieces of marine electronic equipment. The standard
permits marine electronics to send information to computers
and to other marine equipment. Most GPS receivers understand
the standard which is called: 0183 version 2. This standard
dictates a transfer rate of 4800 b/s. Some receivers also

understand older standards. The oldest standard was 0180
followed by 0182 which transferred data at 1200 b/s. An earlier
version of 0183 called version 1.5 is also understood by some
receivers. Some Garmin units and other brands can be set to
9600 for NMEA output or even higher but this is only
recommended if we have determined that 4800 works ok and
then we can try to set it faster. Setting it to run as fast as and
may improve the responsiveness of the program. Some units
also support an NMEA input mode. While not too many
programs support this mode it does provide a standardized way
to update or add waypoint and route data. Note that there is no
handshaking or commands in NMEA mode so just send the
data in the correct sentence and the unit will accept the data and
add or overwrite the information in memory. If the data is not
in the correct format it will simply be ignored. A carriage
return/line feed sequence is required. If the waypoint name is
the same will overwrite existing data but no warning will be
issued. The sentence construction is identical to what the unit
downloads, so we can, for example, capture a WPL sentence
from one unit and then send the same sentence to another unit.
However, we must be cautious whether two units support
waypoint names of different lengths or not (since the receiving
unit might truncate the name and overwrite a waypoint
accidently). Normally, many units support the input of WPL
sentences and a few supports RTE.

Accordingly, there are many sentences in the NMEA [18,
22] standard for all kinds of devices that may be used in a
Marine environment. Some of the ones that have applicability
to GPS receivers are listed below: (all message start with GP.)

GGA - Fix information

GLL - Lat/Lon data

GRS - GPS Range Residuals

GSA - Overall Satellite data

GST - GPS Pseudo range Noise Statistics

GSV - Detailed Satellite data

WPL - Waypoint Location information

ZTG - Zulu (UTC) time and time to go (to destination)
ZDA - Date and Time

The NMEA 2.3 output from the Garmin Legend, Vista, and
perhaps some others include the BWC, VTG, and XTE
sentences.

The Trimble Scoutmaster outputs: APA, APB, BWC,
GGA, GLL, GSA, GSV, RMB, RMC, VTG, WCV, XTE,
ZTG.

The Motorola Encore outputs: GGA, GLL, GSV, RMC,
VTG, ZDA and a proprietary sentence PMOTG.

While a user is moving, NMEA collects the GPS signals
based on the couple of the elements such as latitude, longitude,
date, time and speed.

$GPGGA,123519,4807.038,N,01131.034,E,1,08,0.9,545.4,
M,46.9,M,,*47

$GPGGA,123530,4807.038,N,01131.045,E,1,08,0.9,545.4
M,46.9,M,,*47

$GPGGA,123545,4807.038,N,01131.050,E,1,08,0.9,545.4
M,46.9,M,,*47

>

’

$GPGGA,123552,4807.038,N,01131.067,E,1,08,0.9,545.4,
M,46.9,M,,*47

$GPGGA,123601,4807.038,N,01132.000,E,1,08,0.9,545.4,
M,46.9,M,,*47

Where
GGA Global Positioning System Fix Data
123519 Fix taken at 12:35:19 UTC

4807.038,N Latitude 48 deg 07.038' N
01131.000,ELongitude 11 deg 31.000' E
1 Fix quality: 0 = invalid

1 = GPS fix (SPS)

2 =DGPS fix

3 =PPS fix

4 =Real Time Kinematic
5 =Float RTK

6 = estimated (dead reckoning)
(2.3 feature)

7 = Manual input mode

8 = Simulation mode

08 Number of satellites being tracked

0.9 Horizontal dilution of position

545.4.M Altitude, Meters, above mean sea level

46.9.M Height of geoid (mean sea level) above
WGS84 ellipsoid

(empty field) time in seconds since last DGPS update
(empty field) DGPS station ID number

*47 the checksum data, always begins with *

Figure 1. The Example Decode of selected position sentences from GPS

signals on NMEA format [3].

As Fig. 1 illustrates, after decoding the navigation
sentences, our system gets the information from current GPS
signals through the Cloud and writes them into a text file
compatible with the standard format of NMEA.

C. National Marine Electronics Association (NMEA)

MapReduce programs [5-12] are executed in two main
phases, called mapping and reducing. Each phase is defined by
a data processing function, and these functions are called
mapper and reducer, respectively. In the mapping phase,
MapReduce takes the input data and feeds each data element to

646

the mapper. In the reducing phase, the reducer processes all the
outputs from the mapper and arrives at a final result as show on
Fig. 2.

Tupnt HOES

Output 1o HDFS

el

Figure 2. MapReduce Architecture [7-8].

As Fig. 2 illustrates, the MapReduce Framework consists of
two mainly folds and subcategories [8-14] as the following: 1)
Map Processing: HDFS splits the large input data set into
smaller data blocks (64 MB by default [15-16]) controlled by
the property dfs.block.size. 2) Spill: When the buffer size
reaches a threshold size controlled by io.sort.spill.percent
(default 0.80, or 80%), a background thread starts to spill the
contents to disk. 3) Partitioning: Before writing to the disk the
background thread divides the data into partitions. 4) Sorting:
In-memory sort is performed on key (based on compareTo
method of key class). 5) Merging: [17] Before the map task is
finished, the spill files are merged into a single partitioned and
sorted output file. 6) Compression [18-19, 21]: The map output
can be compressed before writing to the disk for faster disk
writing, lesser disk space, and to reduce the amount of data to
transfer to the reducer. 7) Re-duce Operations [22]: The
reducer has three phases as follows: Copy, Sort and Reduce.

III. ARCHITECTURAL OVERVIEW

In this section, we present the cloud computing on mobile
devices using Hadoop MapReduce. Our method uses the
following major steps: (a) The GPS data are stored in the cloud.
The Hadoop Map/Reduce system accesses the GPS data
through the ‘namenode’. (b) The MapReduce framework and
the Hadoop Distributed File System (HDFS) are used to
process vast amounts of GPS data (multi-terabyte data-sets) in-
parallel on large clusters. (c) A Map/Reduce job splits the
input GPS data-set into independent chunks which are
processed by the map tasks in a completely parallel manner. It
sorts the outputs of the maps which are then input to the reduce

tasks. Both the input and the output of the job are stored in a
file-system (HDFS files) presented in Fig. 3.

As Fig. 3 illustrates, we found out that in general retrieving
data from the cloud takes an hour despite the fact that storing
data in a database consumes more than 4GB of memory.
Without a doubt, queries take long time to process and return
the results. On the other hand, the Map/Reduce technique
significantly reduces the overall execution time of queries.

As Fig. 4 illustrates, we have ported the DataNode and
TaskTracker processes to work on Android. A Hadoop cluster
is configured to run on both Android/Windows Phone devices.
Running Hadoop on a cluster of phones is analogous to running
Hadoop on a cluster of servers. In both cases, there is one
instance of the NameNode and one instance of the JobTracker.

These often run on the same machine. The slave machines in
the cluster each run DataNode and TaskTracker instances. In
this paper, the DataNode and the TaskTracker are run on each
phone in separate Android/Windows Phone “service™ processes
within the same application. Android/Windows Phone
applications may consist of multiple processes, some of which
run as background services. Since the DataNode and
TaskTracker are run as Android/Windows Phone services, they
can run in the background of other applications. The
performance of these phones is compared to the performance of
a cluster of 10 AMD Opteron 1220 machines, each with 4 GB
RAM, two Seagate Barracuda 7200.10 320 GB disks, and a
Broadcom NetXtreme BCM5721 Gigabit Ethernet controller.
Each node runs Debian GNU/Linux 4.0 (etch) with Linux
kernel 2.6.18,

Applications

HDFS and MapReduce Interfaces

NameNode Jobtracker NameNode Jobtracker NameNode Jobtracker
Traditional Android Windows Phone
Server Devicesl..n Devicesl..n

Figurc 4. The Hadoop on a Mobile Cluster.

IV. IMPLEMENTATION AND TESTING

The first step towards porting Hadoop to run on
Android/Windows Phone was to compile Hadoop’s source
code into both Android/Windows Phone applications. We
planned to create Android/Windows Phone applications that
can act as a slave in a Hadoop network (running DataNode and
TaskTracker instances). Instantiating the DataNode and
TaskTracker was just a matter of including Hadoop's source in
the Java build path in Android/Windows Phone project. We
started with Hadoop 0.20.0. Hadoop allocates memory buffers
that are on the order of 10 to 100 MB. This is too much for
Android and Windows Phones application whose heap can
grow to a maximum of 16MB, To fix the restriction, the buffer
sizes were reduced to about | MB. This caused excessive
swapping to occur. This swapping was reduced by adjusting
the io.sort.recordpercent parameter. The default values for
some timeouts in Hadoop are not long enough for a mobile
device network. For instance, the value of the
dfs.socket.timeout had to be increased to compensate for
connection issues. Hadoop uses XML for its configuration files
even though the same key-value configuration could be stored
in a simpler format, such as a properties file as Pseudocodel .

Pseudocode 1: Distributed Mode on XML file

<?xml version="1.0"7>

<!-- core-site.xml -->
<configuration>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost/</value>
</property>

</configuration>

<!-- hdfs-site.xml -->
<configuration>

<property>
<name>dfs.replication</name>
<value>1</value>

</property>

</configuration>

<!-- mapred-site.xml -->
<configuration>

<property>
<name>mapred.job.tracker</name>
<value>localhost:8021</value>

</property>

648

200000
150000 |

Ym0

100000 200000 3200000 400000

500000 700000

Figure 5. Network receive.

300000

250000 |
200000 |
150000

G000 800000 700000

Figure 6. Network send.

Fig. 5-6 illustrates the system resource usage data such as
Network based on the time and data file size —to sort
benchmark on 3 of 10 phones.

V. CONCLUSIONS

In this paper, we have combined the two concepts of cloud
computing and mobile networks with the intention of bringing
benefits for mobile users, network operators, as well as cloud
providers. Cloud computing has many advantages over
traditional computing models. Our proposed approach in this
study provided an abstract interface for using data and
executing computing jobs on a mobile device cloud. As a
result, implementing the distributed multimedia search and
sharing application, we could provide a more convenient and
sufficiently abstract interface for developing applications that
use mobile data.

REFERENCES

I Paul Zikopoulos and Chris Eaton. “Understanding Big Data”, McGraw
Hill Professional, Oct 19, 2554,

T. White: Hadoop, “The Definitive Guide (1st edn.)”, O'Reilly Media,
Inc., United States of America, 2009.

http://hadoop.apache.org/

B. Furht, “Handbook of Cloud Computing”, Springer, 2010

M. Miller, “Cloud Computing: Web-Bascd Application that change the
way you work and collaborate online”, Que Publishing, 2010

W. Premchaiswadi and W. Romsaiyud, “Optimizing and Tuning
MapReduce Jobs to Improve the Large-Scale Data Analysis Process”,
International Journal of Intelligent Systems, Vol. 28, Issuc 2, pp. 185-
200, 2013.

Hadoop MapReduce Change Log. Release0.22.1 —Unreleased.

http://hadoop.apache.org/mapreduce/docs/r0.22.0/changes.html>,
Accepted 02012012.

1]
[2]
B3]

4]
(5]

[6]

<

(8]

(]

(10]

[m

[12]

3

(14]

[15]

(16]

[17]
(18]
(19]
(20]

(21]

W. Premchaiswadi and W. Romsaiyud, “Extracting Weblog of Siam
University for Learning User Behavior on MapReduce”, Int’l Conf of
Intelligent and Advanced System (ICIAS), pp. 149-154, 2012.

D. Meng, Jizhong Han, Jianfeng Zhan, Bibo Tu, Xiaofeng Shi and Le
Wan, "Transformer: A New Paradigm for Building Data-Parallel
Programming Models", Vol. 30, Issue 4, pp. 55-64, 2010.

Y. Hung-chih, A. Dasdan, H. Rucy-Lung and D. Stott Parker, “Map-
Reduce-Merge: simplified relational data processing on large clusters”,
Proc. ACM SIGMOD Int'l Conf on Management of Data
(SIGMOD’07). pp. 1029-1040, 2007.

R. McCreadie, C. Macdonald and 1. Ounis, “MapReducc indexing
strategies: Studying Scalability and Efficiency”, Jour. Information
Processing and Management, pp. 1-16, Elsevier, 2010.

Z. Li-na,J. Linand Y. Zhang, “Data Mixed-extraction Strategy based on
the Time Characteristics in CDW™. First International Confcrence on
Pervasive Computing, Signal Processing and Applications, pp. 1129-
1131, 2010.

P.1. Hofgesang and W. Kowalczyk, “Analyzing Clickstream Data: From
Anomaly Detection to Visitor Profiling”, ECML/PKDD Discovery
Challenge 2005, 2005.

A. Banerjee and J. Ghosh, “Clickstream clustering using Weighted
Longest Common Subsequences”, Int’l Conf of the Web Mining
Workshop at the 1st SIAM Conference on Data Mining, Chicago, 2001.
D. Jiang, A. K.H. Tung and G. Chen, “MAP-JOIN-REDUCE: Toward
Scalable and Efficient Data Analysis on Large Clusters”, IEEE Trans.
Knowledge and Data Engincering, Vol. 23, No. 9, pp. 1299-1311,
September 2011,

L. Ma, H. Liao, Y. He, F. Liand Q. Gao, “A Switch Criterion for Hybrid
Datasets Merging on Top of Map Reduce”, Proc. Eighth 1EEE Int’l
Conf. Grid and Cooperative Computing (GCC’09), pp. 293-298, 2009.
http://www.nmea.org/
http://msdn.microsoft.com/en-us/library/aa920475.aspx
https://www.42tele.com/Global_Network Coverage/SMS/Thailand/
Microsoft Corporationm, “Radio Interface Laver (RIL) White paper”.
Junc 2004,

htip://www . netmite.com/android/mydroid/development/pdk/docs/teleph
ony.html

649

	a1.jpg
	a2.jpg
	a3.jpg
	a4.jpg
	a5.jpg
	a6.jpg

