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Abstract— Fractance is the terminology for any integro-
differential operator which its order can be fractional. It is often
cited in various disciplines such as biomedical engineering,
control engineering and electronic engineering etc., which are the
crucial basis in the design and implementation of signal
processing systems. Since analytically obtaining time domain
response of fractance yields advantage in many circumstances,
an analytical expression of such response has been derived in this
research where the fractance under consideration can be of
arbitrary order even though the magnitude of such order may be
greater than unity. This expression has been found to be an
efficient mathematical tool for those aforementioned fractance
involved disciplines which support the signal processing system
design and implementation.

I. INTRODUCTION

Fractance ie. fractional impedance is the analog domain
terminology for any integro-differential operator which its
order, a can be fractional. Fractance is often cited in various
disciplines for example biomedical engineering [1]-[3], control
engineering [4]-[6] and electronic engineering [7]-[9] etc.,
which are the crucial basis in the design and implementation of
signal processing systems. In many circumstances, analytically
obtaining the time domain responses of such fractance yields
an advantage. An example of such circumstances is the
characterizations of biological tissues [1]-[3], [10], [11] which
can be considered in the analog domain as fractances.
Traditionally, such characterizations can be performed by
using the numerical simulation [12] based on the measured
time domain responses obtained from exciting the target
fractance by the predetermined inputs. This traditional
methodology is cumbersome and also yields non analytical
results which are imprecise compared to the analytical ones. It
can be seen that much of the effort can be reduced and the
analytical characterization results can be expected if the time
domain responses of the fractance under consideration can be
analytically obtained. According to various citations of
fractance and such advantage of analytically obtaining its time
domain responses, the analytical expressions of these responses
have been proposed in previous studies such as [13], [14] and
[15] etc. Unfortunately, only fractance with |a| < 1 has been
focused in these studies. For example, only fractance with a =
0.5 and super capacitor i.e. fractional capacitor which |a| < 1,
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have been respectively considered in [13] and [14]. In [15], the
fractional trigonometric functions based expression of
sinusoidal response of fractance has been derived under the
assumption that |a < 1.

Hence, an analytical expression of voltage response in time
domain of fractance has been derived in this research under the
assumption that the often cited step function has been chosen
as the current input according to its simplicity and
mathematical relationships to other renowned inputs such as
impulse function, ramp function and parabolic function etc.
The resulting expression can be applied to fractance with
arbitrary a even though |a|] > 1. By the aforementioned
mathematical relationships, expressions of responses to other
renowned inputs mentioned above can be derived by using the
proposed expression as the basis. So, the derived expression
has been found to be an efficient mathematical tool for those
fractance interested research fields which are beneficial to the
design and implementation of signal processing systems.

II. DERIVATION OF THE EXPRESSION
In this section, derivation of the proposed expression will be
shown. For any fractance, its impedance function, Z(s) can be
given by
Z(s)=Ks* 0]

where K denote the amplitude of Z(s). By using (1), the s-
domain voltage response, V(s) can be found as

V(s)=Ks*I(s) 2

where I(s) denotes the s-domain current input.
By taking the inverse Laplace transformation, the desired
time domain voltage response, V(#) can be obtained as follows

V() = KD *[1(1)] ©)

where D[ ] denotes the fractional order derivative operator.
There exist various mathematical definitions of fractional order
derivative [16]-[18] etc. For this research, the renowned
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Riemann-Liouvielle definition has been generically used i.e.
without choosing any specific value of m which defines the
lower bound and upper bound of a. So, m can be any real
integer.

By using such generic definition of fractional order
derivative, V(f) become

_ K __qlt _ m—a,—1
Fif == dt,n{(t "% (1)dt (4)

where m-1 < a < m. Under the aforementioned assumption,
I(#) = Iqu(t) where I, denotes the amplitude of I(¢). As a result,
V(#) after the integration is
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where m-1<a < m.

By evaluating the derivative in (5) in the iterative manner
and baring the fact that m can be negative which the derivative
become integral in mind, V() can be finally derived as follows
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where m-1 <a < m.

By using the derived expression, V(7) of fractance with any a
can be analytically obtained even though such fractance may
has |a| > 1. This is because m can be any real integer so, there
are infinitely possible ranges for a as m-1<a < m. Asa result,
« can take any real value. This versatility of the derived
expression is caused by the usage of the Riemann-Liouvielle
definition in the generic manner as mentioned above.

As illustrations, determining of ¥(#) of both fractance with
la] <1 and with |a| > 1will be demonstrated. Firstly, that with
o < 1 such as that with -1 <a <0ie. m=0, for example, the
celebrated half order integrator/capacitor which a = -0.5 etc.,
will be considered. Here, ¥(¢) of fractance with -1 <a <0 can
be found by using the proposed expression withm=0as

_ KIot™%u(t)
e e ™

One may argue that the proposed expression is eventually
reduced to (7) which is much simpler. Unfortunately, this

reduction is not possible. For this case which m € {{0} 5

some necessary conditions such as m-a-1> 0, m-a-2 > 0 and
m-a-3 > 0 etc., violate m-1 < a < m since they are o < m-1,

o < m2 and o < m-3 etc., respectively. As a result, the
proposed expression is not reducible.

Now, fractance with |a| > 1 such as that with -2 <a <-1 and
3<a<-2ie m=-1and m = -2 respectively, will be
considered. For fractance with -2 < a < -1, ¥(f) can be found by
using the proposed expression with m = -1 as shown in (8).
When K = 1 and I, =1, this F(¢) can be plotted against ¢ and a
as in Fig.1. One may also argue that (8) can be reduced to (7) if
and only if necessary constraints including a > -1 are met.
Unfortunately, & > -1 cannot be met since the range of o for
this circumstance is -2 < a <-1. So, (8) is not reducible.

KI ot ™u(t)

V= a(l+ o) (-1-a)
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For fractance with -3 < a < -2, V(f) can be found by using
the proposed expression with m = -2 as shown in (9). When
K =1 and I, =1, this V(#) can be plotted against ¢ and a as
depicted in Fig.2. Once again, one may argue that (9) can be
reduced to (7). However, this reduction is impossible since
«> -2 which is one of the necessary conditions, cannot be met
as -3 < a < -2 in this circumstance.

KI ot % u(t)
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Vi) = €

At this point, it can be seen that there are many possible
V(f) up to the chosen ranges of a such as (7), (8) and (9) etc.,
which can be conveniently formulated by using the proposed
expression. So, this expression has been found to be an
efficient and necessary mathematical tool for various fractance
involved disciplines mentioned above which are the very
important foundations in the design and implementation of
signal processing systems. In the subsequent section, practical
applications of this expression to specific fractances will be
presented

Fig. 1. V() of fractance with -2 <a <-1vs. tandawhenK=1and/,=1




Fig. 2. W(#) of fractance with-3 <a <-2v.s.rand a when K=1and /=1

III. PRACTICAL APPLICATION

Firstly, the half order integrator/capacitor will be considered.
Since its & = -0.5 i.e. m = 0 and o] < 1, its V(f) can be
determined by using the proposed expression with such m and
a as shown in (10) and can be plotted with respected to ¢ as
depicted in Fig.3 when K= 1 and I, =1.

V() = 2Klo\/zu(t) (10)
T

Now, the fractance with « = 0.5 which is also known as the
renowned half order differentiator/inductor will be considered.
Since @ = 0.5 i.e. m =1 and |a| < 1, V(f) of the half order
differentiator/inductor can be found by using the proposed
expression with these m and a as shown in (11) where its
similarity to the step response proposed in [13] can be
observed.

KI qu(t) 11
= v

Finally, the fractance with & = -1.5 i.e. m = -1 and |a| > 1,
will be considered. By using the proposed expression with
these m and a, V(¥) of this fractance can be found as shown in
(12) and can be plotted with respected to ¢+ when K = 1 and
Iy =1 as depicted in Fig.4. If a become -2, the Frequency
Dependent Negative Resistor (FDNR) is obtained and V(f) can
be given by V(z) = 0.5KIofu(?).

3
V)= ﬁ\/zum (12)
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In the next section, the proposed expression based derivation
of the voltage responses to other renowned inputs i.e. impulse
function, ramp function and parabolic function will be
demonstrated.
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Fig. 3. V() of half order integrator/capacitor v.s. t when K =1 and I, = |

1 2 3 4 5
Fig. 4. V(1) of fractance with a=-1.5 v.s. fwhen K =1and /o= 1

IV. VOLTAGE RESPONSES TO OTHER RENOWNED INPUTS

Since the impulse function input given by I5(¢) = 1,d(¢) can
be related to /(f) = Lyu(t) by Is(f) = D[I(f)] where D[ ] denotes
the 1* order differential operator, the voltage response of
fractance of order a to I5(¢), Vs(f) can be given based on the
proposed expression as

Klo[ﬁ (n- a)]r“-‘u(t)

n=0
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where m-1 < a < m. A similar voltage response can be
obtained by applying /(¢) to the fractance of order a + 1 which
can be viewed as that of order a cascaded by an ordinary



differentiator/inductor. Obviously, one may claim that Vy(¢) as
shown in (13) can be eventually reduced to

KI ot~ u(t)

rco) (14)

Vs (2) =

which is much simpler. Similarly to the proposed
expression, Vy(f) as in (13) is not reducible because some
necessary conditions such as such as m-a-1 > 0, m-a-2 > 0 and
m-a-3 > 0 etc., clearly violate m-1 < a < m as they are
a <m-1,a <m-2 and a < m-3 etc., respectively.

As the ramp function input given by (f) = Iytu(f) can be
related to I(f) by I(f) = D'[I(t)] where D[ ] denotes the 1%
order integral operator, the voltage response of fractance of
order o to L(f), V,(f) can be given based on the proposed
expression as

Klo[rm[(n-a)jlt'“”u(t)
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where m-1 < a < m. A similar response can be obtained by
applying /() to the fractance of order @« — 1 which can be
viewed as that of order a cascaded with an ordinary
integrator/capacitor.

Finally, since the parabolic function input given by
L(f) = If*u(f) can be related to X(t) by I(t) = D™[I()] where
D[ ] denotes the 2™ order integral operator, the voltage
response of fractance of order a to I,(z), V,(f)can be given
based on the proposed expression as follows

- K, [ﬁ(n - a)]t““*zu(t)
n=0
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where m-1 < a < m. A similar response can be obtained
from by applying /(¢) to fractance of order a — 2 which can be
viewed as that with order a cascaded by two normal
integrators/capacitors.

V. CONCLUSION

In this research, an analytical expression in time domain of
voltage response to the often cited step input current of
fractance has been derived as analytically obtaining time
domain response of fractance yields advantage in many

circumstances. This expression can be applied to fractance of
arbitrary a even though |a] > 1. The responses to other
renowned inputs such as impulse, ramp and parabola can be
analytically determined based on the proposed expression as
demonstrated. So, this expression has been found to be an
efficient mathematical tool for the aforementioned fractance
involved disciplines which support the design and
implementation of signal processing systems.
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